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Final Report
Research on Fault-tolerant and Real-time Computing
AFOSR Grant F49620-94-1-0198

Fred B. Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853

1. Introduction

Under the auspices of this AFOSR funding, research was performed on a variety of topics
related to the implementation of fault-tolerant, real-time, and embedded control software for distri-
buted systems. The research had theoretical as well as practical components:

e  Programming logics, formal methods, and programming methodology. We investigateed pro-
gramming logics to support the analysis of distributed programs that must satisfy real-time con-
straints, must interact with a continuous physical environment, and whose correctness depends
on properties of schedulers and degree of resource contention.

e Fault-tolerance. We invented and prototyped a new approach to supporting replication
management. It is based on modifying a virtual machine monitor that runs below an operating
system. We have also devised a new approach to analyzing a system’s fault-tolerance.

e Agent-based Computing. We started studying a new paradigm for structuring distributed sys-
tems: the use of mobile agents. A series of prototype systems were implemented and released,
and algorithms for constructing fault-tolerant agents were developed.

The work led to 20 publication, which are listed at the end of this report. One patent was granted, and
a second patent disclosure was filed and remains pending.

2. Formal Methods

Our work in formal methods was driven by the desire to make logics a usable tool for system
developers. Mastery of ordinary first-order logic is required to use most formal methods. Because it
is a stumbling block for so many, we investigated ways to make that logic more accessible. This led
to our equational presentation of the logic, called E, and a sophomore-level discrete mathematics text.
We have since thoroughly explored the axiomatization, use, and teaching of E, and we are slowly
generalizing the logic and approach. For example, we developed an equational reasoning apparatus
for Dijkstra’s "everywhere" (i.e. "is valid") operator. Not only does the new axiomatization extend
calculational reasoning to a broader setting, but it reveals a surprising property of logical systems:
axiomatizations based on schemas need not be equivalent to employing a substitution inference rule
in concert with a finite number of axioms.

The leverage of formal methods is greatest for programming problems that are small and intri-
cate, because brute-force methods do not work there. Process control programs are an example of
such programs. For that reason, we investigated methods for extending extant formal methods to this
setting. And we discovered two principles for analyzing programs whose executions are affected by
an environment. These principles have now been used for verifying real-time behavior of concurrent
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programs constrained by schedulers and limited resources; they have also been used for verifying
hybrid systems, systems involving continuous physical processes as well as discrete control.

Finally, we made progress on a new characterization of system refinement. The construction of
a system usually involves a sequence of steps where abstractions are replaced by implementations.
Of interest is a method to establish that this replacement preserves a specification. A variety of
methods have been proposed. One, based on refinement mappings, is methodologically attractive.
However, it was restricted to specifications that exhibit "finite non determinism" and were formulated
as separate safety and liveness properties. We have shown that neither restriction was necessary; we
have extended the method and eliminated both requirements.

3. Fault-Tolerance

All schemes for implementing fault tolerance involve some form of replication, where replicas
are assumed to fail independently. The key engineering issue that the designer of a fault-tolerant
computing system must address is deciding where in the system to implement replica coordination.
We have developed a new set of replica-coordination protocols that run below an operating system
but above the hardware. With these protocols, a processor can be made fault-tolerant without modi-
fying the hardware, operating system, or application programs. A prototype implementation of the
protocols established that their cost was reasonable.

Most reasoning about system fault-tolerance is ad hoc and informal. With large, critical-
infrastructure systems, however, this approach and the confidence we can have in its conclusions are
unsatisfactory. Therefore, we investigated a new verification framework that is specialized to fault-
tolerance. Our framework permits more-natural specifications of fault-tolerance requirements than
general-purpose formalisms (e.g. temporal logic). Because it is specialized, the framework supports
efficient and mechanized analysis of system fault-tolerance. We implemented an initial prototype
software tool based on the framework. The tool has a graphical front end and hides from its users the
analysis process itself, making it something that could be included in the "survivable systems toolkit"
a system designer might turn to. :

4. Operating System Support for Agents

We investigated a new paradigm for structuring distributed systems: mobile agents. The effort
involved building operating system support for agents as well as attacking more fundamental prob-
lems.

On the practical side, our TACOMA (Tromsoe and Cornell Moving Agents) system is now in
daily use as a production platform and runs under HP-UX, Solaris, BSD Unix, and Linux. In contrast
to other agent-based approaches, TACOMA supports agents written in a variety of languages.
Currently, these languages include C, Java, Perl, Scheme, Python, and Tcl/Tk. A new version of
TACOMA, based on HTTP for communications and an ML server, is now being programmed. This
HTTP/ML version will make TACOMA a part of the world-wide web and, therefore, broadly accessi-
ble.

Our more fundamental agent-based work is driven by the agent-integrity and host-integrity
problems. The agent-integrity problem concerns ensuring that an agent computation is successfully
completed despite the presence of malicious and faulty hosts. Our work on this problem has led to
the study of cryptographic abstractions that can provide fault-tolerance. The host-integrity problem
concerns securing hosts so that they cannot be compromised by faulty or hostile agents. Here, we
have pursued the use of wrappers and compile-time analysis of agents.
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